

This document consists of 19 printed pages.

© UCLES 2021

[Turn over

Cambridge International AS & A Level

COMPUTER SCIENCE 9608/41

Paper 4 Further Problem-solving and Programming Skills October/November 2021

MARK SCHEME

Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the
examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the
details of the discussions that took place at an Examiners� meeting before marking began, which would have
considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for
Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most
Cambridge IGCSE�, Cambridge International A and AS Level components and some Cambridge O Level
components.

9608/41 Cambridge International AS & A Level � Mark Scheme
PUBLISHED

October/November 2021

© UCLES 2021 Page 2 of 19

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the
specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these
marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

• the specific content of the mark scheme or the generic level descriptors for the question

• the specific skills defined in the mark scheme or in the generic level descriptors for the question

• the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

• marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the
scope of the syllabus and mark scheme, referring to your Team Leader as appropriate

• marks are awarded when candidates clearly demonstrate what they know and can do

• marks are not deducted for errors

• marks are not deducted for omissions

• answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the
question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level
descriptors.

9608/41 Cambridge International AS & A Level � Mark Scheme
PUBLISHED

October/November 2021

© UCLES 2021 Page 3 of 19

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may
be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or
grade descriptors in mind.

9608/41 Cambridge International AS & A Level � Mark Scheme
PUBLISHED

October/November 2021

© UCLES 2021 Page 4 of 19

Question Answer Marks

1(a) 1 mark for TopPointer

1 mark for correct data in stack

TopPointer 2 Index Data

 [7]

 [6]

 [5]

 [4]

 [3] (8)

 [2] 50

 [1] 20

 [0] 10

2

9608/41 Cambridge International AS & A Level � Mark Scheme
PUBLISHED

October/November 2021

© UCLES 2021 Page 5 of 19

Question Answer Marks

1(b) 1 mark per bullet point

• Function header (and close where appropriate returning an integer)

• Checking if stack is empty �

• � and returning −1 if it is

• If there is data in stack, decrementing TopPointer

• (Otherwise) returning the top Value

Example code:

VB.NET
Function Pop()

 Dim Value as Integer

 If TopPointer < 0 Then

 Return -1

 Else

 Value = DataStack(TopPointer)

 TopPointer = TopPointer – 1

 Return Value

 End if

End Function

Python
def Pop():

 if TopPointer < 0 :

 return -1

 else:

 Value = DataStack(TopPointer)

 TopPointer= TopPointer – 1

 return Value

5

9608/41 Cambridge International AS & A Level � Mark Scheme
PUBLISHED

October/November 2021

© UCLES 2021 Page 6 of 19

Question Answer Marks

1(b) Pascal
Function Pop(): integer;

var

 Value : integer;

begin

 if TopPointer < 0 then

 Pop := -1

 else

 Value := DataStack(TopPointer);

 TopPointer := TopPointer – 1;

 Pop := Value

end;

1(c) 1 mark per bullet point to max 2

• In a stack the last item in is the first out/LIFO and in a queue the first item in is the first out/FIFO

• Queue can be circular, but a stack is linear

• Stack only needs a pointer to the top (and can have a base pointer) and a queue needs a pointer to the front and the
rear

2

9608/41 Cambridge International AS & A Level � Mark Scheme
PUBLISHED

October/November 2021

© UCLES 2021 Page 7 of 19

Question Answer Marks

2 1 mark per bullet point

• Input mark, calculate grade and output grade on level 1�

• � in correct order

• All grades below calculation

• Selection only on the grades and no other iteration/selection anywhere

4

GradeGenerator

Input mark Calculation

grade = A grade = B grade = C grade = D grade = U

Output grade

9608/41 Cambridge International AS & A Level � Mark Scheme
PUBLISHED

October/November 2021

© UCLES 2021 Page 8 of 19

Question Answer Marks

3 1 mark for each completed statement

FUNCTION BinarySearch(ThisArray, LowerBound, UpperBound, SearchItem: INTEGER)

 RETURNS INTEGER

 DECLARE Flag : BOOLEAN

 DECLARE Mid : INTEGER

 Flag ← -2

 WHILE Flag <> -1

 Mid ← LowerBound + ((UpperBound – LowerBound) DIV 2)

 IF UpperBound < LowerBound

 THEN

 RETURN -1

 ELSE

 IF ThisArray[Mid] > SearchItem

 THEN

 UpperBound ← Mid – 1

 ELSE

 IF ThisArray[Mid] < SearchItem

 THEN

 LowerBound ← Mid + 1

 ELSE

 RETURN Mid

 ENDIF

 ENDIF

 ENDIF

 ENDWHILE

ENDFUNCTION

6

Question Answer Marks

4(a) 1 mark per clause
teacher(fred)

busy(fred, tuesday, 1)

2

9608/41 Cambridge International AS & A Level � Mark Scheme
PUBLISHED

October/November 2021

© UCLES 2021 Page 9 of 19

Question Answer Marks

4(b) 1 mark for 1 correct
1 mark for all 3 days of the week correct
busy(jill, monday, 1)

busy(jill, tuesday, 1)

busy(jill, wednesday, 1)

1 mark for 1 correct
1 for the other 2 with OR
busy(jill, monday, 1) OR busy(jill, tuesday, 1) OR busy(jill, wednesday, 1)

2

4(c) 1 mark
busy(X, monday, 3)

1

4(d) 1 mark per bullet point

• Checking X is a teacher

• Checking Y is a timeslot, Z is a day

• NOT(busy(X, Z, Y))

• All included, linked with ANDs and nothing superfluous

teacher(X) AND timeslot(Y) AND day(Z) AND NOT(busy(X, Z, Y))

4

9608/41 Cambridge International AS & A Level � Mark Scheme
PUBLISHED

October/November 2021

© UCLES 2021 Page 10 of 19

Question Answer Marks

5(a) 1 mark per bullet point

• Output = 21

• Function calls with Recursion(104,102) and Recursion(103, 102)

• Function calls with 102 and 102, and 92 and 102

• Unwinding the return values 5+5+10+1

Function call A B Return value

Recursion(104, 102) 104 102 5 + Recursion(103, 102)
5 + 16

Recursion(103, 102) 103 102 5 + Recursion(102, 102)
5 + 11

Recursion(102, 102) 102 102 10 + Recursion(92, 102)
10 + 1

Recursion(92, 102) 92 102 1

4

9608/41 Cambridge International AS & A Level � Mark Scheme
PUBLISHED

October/November 2021

© UCLES 2021 Page 11 of 19

Question Answer Marks

5(b) 1 mark per bullet point to max 4

• Function header takes two parameters, returns the calculated value accurately (outside/end loop and in all cases)

• Initialising variable to 1 outside loop (or adds 1 before returning)

• Looping while A > 100 // looping until A <= 100 (or equivalent) �

• � checking if A > B inside loop and if true, add 5 to variable and decrement A

• � checking if A<= B in loop and if true, add 10 to variable and A � 10

Example pseudocode:

FUNCTION Recursion(A, B : INTEGER) RETURNS INTEGER

 DECLARE Value : INTEGER

 Value ← 1

 WHILE A > 100

 IF A > B

 THEN

 Value ← Value + 5

 A ← A - 1

 ELSE

 Value ← Value + 10

 A ← A - 10

 ENDIF

 ENDWHILE

 RETURN Value

ENDFUNCTION

4

Question Answer Marks

6(a)(i) 1 mark per bullet point

• Data structure to store multiple pieces of data (under one identifier)

• ... (stores data) of that can be different data types

2

9608/41 Cambridge International AS & A Level � Mark Scheme
PUBLISHED

October/November 2021

© UCLES 2021 Page 12 of 19

Question Answer Marks

6(a)(ii) 1 mark per bullet point

• record declaration named CustomerData �

• � all 3 correct data items with suitable data types (and identifiers)

TYPE CustomerData

 DECLARE CustomerID : INTEGER

 DECLARE FirstName : STRING

 DECLARE SecondName : STRING

ENDTYPE

2

6(b) 1 mark per completed statement

PROCEDURE StoreRecord(NewData : CustomerData)

 HashValue ← CustomerHash(NewData.CustomerID)

 Filename ← "CustomerRecords.dat"

 OPENFILE Filename FOR RANDOM

 SEEK Filename, HashValue

 PUTRECORD Filename, NewData

 CLOSE Filename

ENDPROCEDURE

5

6(c) 1 mark for naming a feature, 1 for description. Max 2 for each feature
Example:

• Breakpoint

• Stop the program at a set point and check the variables

• Stepping/step-through etc.

• Execute the program one line at a time to check the values

• Variable watch window

• Displays the variable values whilst the program is running so Kobi can make sure they are changed correctly

4

9608/41 Cambridge International AS & A Level � Mark Scheme
PUBLISHED

October/November 2021

© UCLES 2021 Page 13 of 19

Question Answer Marks

6(d) 1 mark for benefit, 1 for drawback
Benefit
Example:

• Saves time because does not have to write own code // write program faster

• Programmer can have limited skills and still produce complex programs

Drawback
Example:

• May not perform the tasks exactly as required

• Solution is likely to be inefficient

• Might produce errors

• The programmer may not understand the solution and hence cannot edit/change

2

Question Answer Marks

7(a) 1 mark per bullet point to max 2

• To stop the program crashing �

• To stop a run-time error �

• � to make sure the input is the correct data type // other reasonable example

2

9608/41 Cambridge International AS & A Level � Mark Scheme
PUBLISHED

October/November 2021

© UCLES 2021 Page 14 of 19

Question Answer Marks

7(b) 1 mark per bullet point

• Using try (and close where appropriate) followed by the input

• Catching exception

• Outputting appropriate message (built-in or otherwise)

Example program code:

VB.NET
Try

 Dim Value As Integer

 Console.WriteLine("Enter a number")

 Value = Console.ReadLine()

Catch ex As Exception

 Console.WriteLine(ex.Message)

End Try

Python
try:

 Value = int(input("Enter a number"))

except:

 print("Invalid number")

Pascal:
begin

try

 readln(Value);

except

 On E : Exception do writeln("Invalid number");

end;

3

7(c) 1 mark per example

• Check file exists

• No input

• No data in file

• Array out of bounds

• Calculation / division by 0

2

9608/41 Cambridge International AS & A Level � Mark Scheme
PUBLISHED

October/November 2021

© UCLES 2021 Page 15 of 19

Question Answer Marks

8(a) 1 mark for rows with index 0, 1 and 3
1 mark for null pointers set to −1

 Index LeftPointer Data RightPointer

RootNode 0 [0] 3 50 1

 [1] 6 67 2

 [2] �1 77 �1

 [3] 4 35 5

 [4] �1 2 �1

 [5] �1 43 �1

 [6] �1 52 �1

 [7] �1 �1

 [8] �1 �1

 [9] �1 �1

 [10] �1 �1

2

9608/41 Cambridge International AS & A Level � Mark Scheme
PUBLISHED

October/November 2021

© UCLES 2021 Page 16 of 19

Question Answer Marks

8(b) 1 mark for each completed statement
PROCEDURE PostOrder(RootNode : INTEGER)

 IF BinaryTree[RootNode, 0] <> -1 THEN

 PostOrder(BinaryTree[RootNode, 0])

 ENDIF

 IF BinaryTree[RootNode, 2] <> -1 THEN

 PostOrder(BinaryTree[RootNode, 2])

 ENDIF

 OUTPUT(BinaryTree[RootNode, 1])

ENDPROCEDURE

5

Question Answer Marks

9(a) 1 mark per bullet point

• array named StoredData of type integer

• with 10 000 elements, index 0 � 9999

• All elements initialised with −1

Example pseudocode

DECLARE StoredData : ARRAY[0:9999] OF INTEGER

FOR X ← 0 to 9999

 StoredData[X] ← -1

NEXT X

3

9(b) 1 mark per bullet point to max 7 7

9608/41 Cambridge International AS & A Level � Mark Scheme
PUBLISHED

October/November 2021

© UCLES 2021 Page 17 of 19

Question Answer Marks

9(b) • Function declaration (and end where appropriate) taking data as (integer) parameter (returns Boolean)

• Calculate hash: parameter mod 1000 + 6

• Check if StoredData[hashed value] = �1 �

• � if it is �1, store data at hash �

• � and return true

• � if not �1, increment/decrement hashed value by 1 �

• � if reached index 9999 return to index 0 // checking and going to 9999 if not at 0

• � repeatedly decrement until either found or all elements checked �

• � returning False if full and True when stored

Example program code
VB.NET
Function AddItem(DataToAdd)

 Dim Location As Integer

 Dim Found As Boolean

 Dim Counter As Integer

 Location = (DataToAdd Mod 1000) + 6

 If StoredData(Location) <> -1 Then

 Found = False

 Counter = 0

 While Found = False And Counter < 9999

 Location = Location + 1

 If Location > 9999 Then

 Location = 0

 End If

 If StoredData(Location) = -1 Then

 Found = True

 End If

 Counter = Counter + 1

 End While

9608/41 Cambridge International AS & A Level � Mark Scheme
PUBLISHED

October/November 2021

© UCLES 2021 Page 18 of 19

Question Answer Marks

9(b) If Found = True Then

 StoredData(Location) = DataToAdd

 Return True

 Else

 Return False

 End If

 Else

 StoredData(Location) = DataToAdd

 Return True

 End If

End Function

Python
def AddItem(DataToAdd):

 Location = (DataToAdd % 1000) + 6

 if StoredData[Location] <> -1:

 Found = False

 Counter = 0

 while Found == False and Counter < 9999:

 Location = Location + 1

 if Location > 9999:

 Location = 0

 if StoredData[Location] == -1:

 Found = True

 Counter = Counter + 1

 if Found == True:

 StoredData[Location] = DataToAdd

 return True

 else:

 return False

 else:

 StoredData[Location] = DataToAdd

 return True

9608/41 Cambridge International AS & A Level � Mark Scheme
PUBLISHED

October/November 2021

© UCLES 2021 Page 19 of 19

Question Answer Marks

9(b) Pascal

function AddItem(DataToAdd:Integer):Boolean;

begin

 Location := (DataToAdd mod 1000) + 6;

 if StoredData[Location] <> -1 then

 begin

 Found := false;

 Counter := 0;

 while (Found = false) and (Counter < 9999) do

 begin

 Location := Location + 1;

 if Location > 9999 then

 Location := 0;

 if StoredData[Location] = -1 then

 found := true;

 Counter := Counter + 1;

 end;

 if Found = true then

 begin

 StoredData[Location] := DataToAdd;

 AddItem := True;

 end

 Else

 begin

 AddItem := False;

 end;

 end

 else

 begin

 StoredData[Location] := DataToAdd;

 AddItem := True;

 end;

end;

